Energy Efficiency and Economics of Maglev Transport* by James Powell and Gordon Danby

www.maglev2000.com

Presented at: 2008 Advanced Energy Conference "Solutions To A Global Crisis"

Stony Brook University, Long Island, NY November 19-20, 2008

*copies of presentation and paper available from james.jordan@cox.net

The Message

- Oil Fueled Autos, Trucks, & Airplanes Dominated 20th Century Transport
- Electrically Powered Autos & Maglev Will Dominate 21st Century Transport

Overview

Maglev-The First New Mode of Transport Since the Airplane

What Maglev Is	What Maglev Is Not			
•Magnetically Levitated Individual Vehicles	•No Mechanical Contact With Rails			
I ravel Above Guideways	•No Engines on Vehicles			
•Magnetically Propelled By AC Windings In	•Not A Long Train of Many Cars			
the Guideway				
•300 MPH Limited only By Air Drag	No Long Wait Until Next			
	Train			
	MAGUITZA			
What Maglev Can Transport	Why Maglev Is Very Safe			
•Passengers				
•Roll-On, Roll-Off Highway Trucks	Inherently Strongly Stable			
•Freight Containers	Cannot Contact Guideway			
•Personal Autos	•If Propulsion Power Cuts-Off Levitated Vehicles Coast To A Safe Landing			
	•Vehicle Speed & Guideway Position Controlled By AC Propulsion Frequency			

Why Maglev?

AGLETT

Energy Benefits

•No Oil – Electrically Powered

Much More Energy Efficient Than Other Transport Modes
With Electric Cars, Zero Oil Imports

Environmental Benefits

Zero Emission of Greenhouse Gases
Minimizes Land Use For Transport
Reduces Environmental Damage From Oil Drilling & Shipping

Economic Benefits

•Faster, Lower Cost Transport

 Increased Productivity & Global Competitiveness

•Major Industry – New Jobs & Reduced Trade Deficit

Quality of Life Benefits

Saves Lives –Fewer Accidents & Less Damage to Public Health
Fast, Comfortable, & Quiet Transport

•No Congestions and Weather Delays

The Realities For Future U.S. Transport

Conventional Oil Very Scarce & Expensive

World Oil Production
Peaking & Will Decline
U.S.Uses 25 Barrels
Per Person Per Year –
Rest of World Only 4

Supply of Biofuels is Small

1 Gallon of Ethanol = ¼
Gallon Gas (Net Energy)
20% of U.S. Corn Crop
Supplies 1% of U.S.
Transport Fuel Needs (Net Basis)

•More Customers For An Ever Shrinking Pie •Ethanol Production Drives Up Food Prices –World Is Already Short of Food

Hydrogen Fuel Is A Fantasy

•Making H2 Fuel Doubles Electrical Generation – From 4 Trillion KWH/Year to 8 Trillion KWH

•Serious Safety & Security Problems, One tank of H2=500# of TNT. Terrorists could Remotely Detonate H2 Autos in Cities.

Oil From Coal Speeds Global Warming

Each U.S. Auto Emits 10 Tons of CO2 /Year
Oil From Coal Doubles Emission to 20 Tons

Increasing World Transport And Oil From Coal will Double World CO2 Emissions/Year.

Maglev—How It Works

Present Status of Maglev Systems

1st Generation – Japan

•Passenger Vehicles Operate in Yamanashi, Japan

•Carried Over 50,000 Passengers at Up to 360 MPH

Plan 300 Mile Maglev
Route Between Tokyo and
Osaka – 2000,000
Passengers Daily
Cost ~ 60M\$ Per Mile

1st Generation – Germany

- Passenger Vehicles Operate on 21 Mile Route in Shanghai.Thiessen-Krupp & Siemens
- Have Withdrawn Support
- •Proposed Projects Cancelled
- •Cost ~60 M\$ Per Mile

2nd Gen–D-P Maglev 2000

- •Full-Scale Hardware (Magnets, Guideway Loops & Beam, Vehicle) Successfully Fabricated.
- •Next Step is Testing on Guideway – w/Gov't Funding
- •Projected Cost ~ 20 M\$/Mile

Unique Capabilities of 2nd Generation Maglev-2000 System

Prefabricated Monorail Guideway

 Prefabricated Guideway Beams & Piers & Attached Loops Trucked to Site •Erected By Conventional Cranes Low Cost Fabrication & Erection •300 MPH on Elevated

•One Container Ship Exports 20 Miles Guideway

Guideway

Levitated Travel Along Existing RR Tracks

•Low Cost Aluminum Loop Panes on Cross Ties Enable Levitated Travel of Maglev Vehicles on RR Tracks. •4 M\$/Mile for Panels

 Maglev-2000 Vehicles Can Use Existing RR Tracks Without Disrupting Existing Infrastructure.

Maglev-2000 Superconducting Magnet

Unique Transport Capabilities

•M-2000 Guideway can **Carry Passengers Highway** trucks, Freight Containers and Personal Autos •M-2000 Vehicles **Electronically Switch At High** Speed From Main Guideway to Off-line Stations for Unloading/Loading

•M-2000 Quadrupole Magnet Can Travel on Both Monorail and Planar Guideways High Speed Electronic Switch Much Greater Load Capability •Magnetic Fringe Fields at Earth Ambient Level

Energy Efficiency by Transport Mode In Barrels of Oil or Oil Equivalent Per 10,000 Passenger Miles

Basis: Transportation Energy Data Book, 25th edition; Stacy Davis and Susan Dregel, Center for Transportation Analysis, Oak Ridge National Laboratory, ORNL-6874 (2006)

Table 1 Propulsion Power and Energy Requirements for High Speed Intercity Maglev Vehicles as a Function of Speed

Basis:

100 Passenger Maglev Vehicle
11 m² Frontal Area
0.22 Effective Drag Coefficient
90% Efficient LSM Propulsion
10 cents/kWh(e)
\$4/Gallon Gasoline, 60 mph, 20 mpg Automobile
1 kWh = 3.6 Mega Joules (MJ)

Speed	Air Drag	I ² R Drag	Total Drag	Total Drag	Energy Per	Energy	Energy/PM	Energy for	Auto Gas
(mph)	Power	Power	Power	Power/LSM	Passenger	Cost/PM	MJ/PM	Auto	Cost/M
	KW(e)	KW(e)	KW (e)	Eff KW (e)	Mile	\$/PM		MJ/PM	\$/P
					kWh(e)/PM				
300	3720	300	4020	4460	0.149	\$0.015	0.54	7.0	0.2
250	2150	300	2450	2720	0.109	\$0.011	0.39	ditto	ditto
200	1100	300	1400	1550	0.078	\$0.008	0.28	ditto	ditto
150	465	300	765	850	0.057	\$0.006	0.20	ditto	ditto

 Table 2

 Propulsion Power and Energy Requirements for Moderate Speed

 Urban/Suburban Maglev Vehicle as a Function of Speed

Basis = Same As Table 1, except 60 passenger Vehicles, & 200 KW(e) I²R Power

Speed (mph)	Air Drag Power KW(e)	I ² R Drag Power KW(e)	Total Drag Power KW (e)	Total Drag Power/LSM Eff KW (e)	Energy Per Passenger Mile	Energy Cost/PM \$/PM	Energy/PM MJ/PM	Energy for Auto MJ/PM	Auto Gas Cost/M \$/P
					kWh(e)/PM				
150	465	200	665	740	0.082	\$0.008	0.29	7.0	\$0.20
100	140	200	340	380	0.063	\$0.006	0.23	ditto	ditto
75	66	200	260	240	0.064	\$0.006	0.23	ditto	ditto

Table 3

Propulsion Power and Energy Requirements For Maglev People Mover

Passenger Capacity	30
Average Speed	30 mph
I ² R Drag Power [100% LSM Eff]	100 KW(e)
I ² R Drag Power [90% LSM Eff]	110 KW(e)
Kinetic Energy of Vehicle	900 Kilojoules
[10,000 kg, 30 mph]	
Air Drag Power	Negligible
Nominal Travel Distance and Trip Time	500 meters & 40 seconds
Nominal Station Stop Time	60 seconds
Average Speed Including Station Stops	12 mph (5.4 m/sec)
Energy Consumption Per Passenger I	Vile with Full Recovery of Kinetic Energy
1. Levitated @ station	0.30 KWH/PM
2. Not Levitated @ station	0.12 KWH/PM
(mech.support)	
Energy Consumption Per Passenger	Mile With No Recovery of Kinetic Energy
3. Levitated@Station	0.33 KWH/PM
4. Not Levitated@ Stations	0.15 KWH/PM
(mech. Support)	

The National Maglev-2000 Network

Annual Outlays, Current and Future, for US Transport Modes (Billions of Dollars)

Source: Statistical Abstracts of the US for 2006 (US Census) & The Changing Face of Transportation (US DOT Bureau of Transportation Statistics (2002)

Payback Time for Maglev-2000 Guideway

Why Don't We Have Maglev In the U.S.?

Maglev Initiative	U.S. Government Response				
Modern Maglev Invented By Danby-Powell in 1966	U.S. DOT Decides Autos & Airpanes Are Sufficient Into the Far Future				
Germany & Japan Develop 1 st Generation Maglev System	No Action				
Senator Moynihan Proposes 750 M\$ U.S. Maglev Program in 1990	Passes Senate But Killed In House By Existing Transport Interests				
U.S. Maglev Deployment Programs Starts in the Late 90's	 7 Routes Selected for Study •6 Routes propose German Transrapid Systems •Florida Proposes 2nd Generation U.S. Maglev-2000 				
Down Select From 7 to 2 Routes.	2 Routes Propose German Transrapid •No Plan to Build – Just More Study				
Maglev-2000 Proposes Developing 2 nd Generation U.S. Maglev Systems	No Action				
Conclusion: Unless U.S. Acts Soon, 2 nd Generation System Will Be Developed Abroad & Exported to the U.S. One Container Ship Can Carry 20 Miles of Guideway					

Implementing the National Maglev Network

- Maglev-2000 Has Successfully Fabricated and Tested The Full-Scale Components for the 2nd Generation 2nd Generation Maglev 2000 System
- Next Step is to Test Assembled Maglev-2000 Vehicles on an Operating Guideway
 - 3 Phase, 5 Year Testing Program Proposed
 - Test Passenger & Truck Carrier Levitated Vehicles at Speeds on Elevated Guideway and Existing RR Tracks
 - Speeds Up to 300 mph on Elevated Guideways
 - Long Term Running Tests for Commercial Certification
 - 600 M\$ Program With Government Funding
- Implementation as National Maglev Network Will Be Privately Financed
 - Fast Payback Time (<5 years)
 - No Government Subsidies
- 6000 Mile Golden Spike Sections Operating by 2019, Full 25,000 Network Completed by 2030 AD

Summary and Conclusions

- Maglev Transport Offers Many Major Benefits, Including
 - Very High Energy Efficiency, Low Cost Transport
 - Does Not Use Oil, Helps Curb Global Warming
 - New U.S. Industry with Many Thousands of Jobs & Billions of Dollars in Exports
- 1st Generation Passenger Only German and Japanese Maglev Systems Too Expensive -- Steel Wheeled HSR Systems Too Limited
- 2nd Generation U.S. Maglev-2000 System Much Lower in Cost and Much More Capable Than 1st Generation Systems.
 - Can Carry High Revenue Highway Trucks, Freight Containers, & Personal Autos
 - Levitated Travel on Existing RR Tracks in Urban and Suburban Areas
 - Payback Time <5 years
- 25,000 Mile National Maglev Network and Electric Cars Will Eliminate Oil Imports By 2030
- U.S. Can Be World Leader in Maglev, But Must Act Now.